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forward and reverse propagation. In the figure it is

shown the attenuation for the empty guide, i.e., for the

same guide without the slab of ferrite.

Let’s follow the forward propagation experimental

curve from left to right. When the slab of ferrite is

against the left side wall the attenuation is at a mini-

mum. By moving the slab of ferrite away from the wall,

after a region of low attenuation, the signal goes very

rapidly below the level of the attenuation of the empty

guide. This is justified by the theoretical results of Fig.

4 and by the considerations about the group velocity.

In fact, beyond the distance b~c’ no propagation can exist

and below such a distance always exists a propagating

mode with group velocity in the forward direction.

N’foving the slab further away from the left side wall,

the signal remains at a level below the empty guide

attenuation level until we reach a distance approxi-

mately equal to b — bf — hoc’ when the attenuation begins

to decrease and then, after it has reached a minimum,

increases again above the empty guide attenuation.

This last behavior is easily explained by the theoretical

results, since beyond the distance b — bf — be.’, energy

begins to pass in the forward direction through modes

having positive group velocity. However, since these

modes have propagation constants going to — cc as the

slab of ferrite approaches the right-hand side wall and

cannot therefore allow propagation in the limit, the

minimum of the attenuation experimentally found is

explained.

From the preceding discussion we can conclude that

there is good agreement between theory and experi-

ments.
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Surrzrnary-The problem of the diffraction of an arbitrary electro-

magnetic field by a circular perfectly-conducting dlsk~has been

solved by using a series representation in powers of k = 27r/k and the

rectangular disk coordinates. The surface current density is given in

terms of the field and its derivatives at the center of the disk. General

expressions for the electric- and magnetic-dipole moments, the far-

field and the scattering coefficient for the case of a plane wave at

arbitrary incidence are presented. The calculations agree with results

published by other authors. A bibliography of the most recent publi-

cations on this problem is included.

1. INTRODUCTION

T

HE problem of the diffraction by a circular con-

ducting disk (or the complementary problem for

a circular aperture in an infinite plane conducting

screen) has occupied many workers in the field of dif -

fl-action theory. The problem can be formulated as

follows :

1)

2)

3)

the electromagnetic field has to obey Maxwell’s

equations,

the boundary conditions on the surface of the disk

have to be fufilled, e.g., for a perfectly-conducting

disk the tangential electric field must vanish,

the edge conditions [48] at the rim of the disk have

to be obeyed; they require that the field energy
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remains finite, or that the energy density has to

be integrable over any finite space. This leads to

the requirement that the normal component of

the electric field increases not faster than (l/r) 112

where r is the distance from the edge,

4) Sommerfeld’s radiation conditions [47] have to be

fulfilled.

In this paper a power-series solution in (,(w) valid for

the small disk problem (a <A,/2m, where a =disk radius,

A = free-space wavelength) and an arbitrary incident

field is given. It is essentially an extension of a proce-

dure described by Bouwkamp [45]. The surface cur-

rent density on the disk up to the third-order approxi-

mation in (ka) is calculated in terms of the electro-

magnetic field and its derivatives at the center of the

disk. From these results expressions for the induced

electric and magnetic dipole moments and the far-zone

fields are derived. The scattering coefficient for a plane

wave at arbitrary incidence has been calculated in agree-

ment with formulas given by Lur’e [19] and Kuritsyu

[20]. The essential advantage of the expressions ob-

tained in this paper is that they can be used for any

primary field. This is important in the case where in-

teraction between several disks is considered. If the

spacing between the disks is not large compared with

the wavelength, the interaction fields cannot be ap-

proximated by a plane wave and the interaction be-
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between the induced dipole moments and higher-order

multipcjle moments have to be taken into account.

Some of this work will be reported at a later date.

II. POWER-SERIES SOLUTION

General Formulation

We ~shall consider a perfectly-conducting circular

disk of radius a with its axis along the z direction as in

Fig. 1. ‘The magnetic vector potential A(R) for the dif-

fracted field is given by

(1)

where J(p’) is the electric surface current density and

the integration is carried out over the disk D. R and p’

are the coordinates of the field point P(x, y, z) and the

surface element dS’ respectively, while z is the radius

vector from dS’ to l’(x, y, z). The time dependence

e~’”~ is omitted throughout, The scattered field is found

from the following relations:

H=&A
Po

VVA
E=–jwA+—.

jl.ywo

The boundary conditions are satisfied

-E.(R) = – EZ’(R)

(2)

(3)

if

EV(R) = – EUL(R) on the disk (4)

II.(R) = – HZ’(R)

where the superscript i indicates the incident field. lVe

now express (2) and (3) in rectangular coordinates and

combine them with (4)

(5)

1 d 13.4. (2.4.
1?. = –j@A. + —

jw/.lrJ,” dx-( )
—+—

ax ay

= – E.’ (6)

, .0

v..’ = ; + ~ is defined as the two-dimensional
.

LaDlace oDerator.

In (6) we used (5) and lh’faxwell’s equations for -&’. A

similar expression as (6) is obtained for EU. ‘lrhese equa-

tions can now be written in the form

(3/4, (3.4.

&T- L?y=–
WOH,i (7)

where k = U(LWO) 1/2 is the free-space wave number.

Eqs, (7) are the basic differential equations which we

shall solve for the vector potential A(x, y) ctn the disk.

Knowing A(:Y, y) we then obtain the surface-current

distribution 7(x’, y’) from the integral equation (1).

In order to obtain a unique solution the conditions

1)–4) in Section I have to be fulfilled. Conditions 1) and

2) have been taken care of in (2)–(4). ‘fle edge condi-

tion 3) will be fulfilled by assuming a suitable current

distribution on the disk, and the radiation conditions

4) are secured by (1) for any finite current distribution.

In the following we attempt to find a power-series

solution for the current J in terms of (ka), which is ex-

pected to converge well for small disks where (ka)

= 2m(a,/h) <1 or a <A/27r (A= free-space wavelength).

First, we consider an expansion of A, J and the right-

hald side of (7) in powers of (k). We obtain the follow-

i ng expressions:

J’=JU+kJ’ +k’J’+k’~+k’J’ +... (8)

Jg-lkr = JO+ k(Jl – ~YJ(’) + k’(~’ – ~YJ’ -- l/2#J0)

+ k’(J8 – jrJ’ – 11’2Y’J’ + l/6jr3J0)

+ k’(J4 – jT~’ – 1 ‘2Y2J’ + l,16jr3J1

+ l/24r’JO) +- . ~ . (9)

A== AO+kA]+ k’A2+k3A3+k’A4 +. (10)

where

“ ‘:;{J.J’:-’J[Y’L’- 1’2JDJ2”d:y

+ I/’fij f J’PdS + 1 i’Mj
f }

J%”ds (11)
n D. .
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For simplification we adopt the following notation:

AO = AOO

Al = All _ jAOl

A~ = /422 – jA12 – l/zA02

A3 = A33 – jA23 – l/2A13 + 1/6jA03

A4 = A44 – jA3’ – l/2A24 + l/6jA’4 + l/24A04 (12)

where the partial vector potentials Amn are defined by

(11) and (12).

8Hui
P“ — =s”+ksl +k’s2+k3s3 +...

82

aHz~
—P” — ‘TO+hT’ +/k2T’+k+T’ +...

a2

‘WOHZ = U“ + kU~+ k2UW k3Uz + . . . . (13)

The coefficients S“, T“, and U“ in (13) are, of course,

functions of the field coordinates x and y and can, there-

fore, be written as

S’ = So” + SI”3”+ Spy + ,Y8”x2 + S4”xy

+S,.yz +...

T“ = Ton + Tiny + Tznx + T&y2 + T4”yx

+T,.X~+ . . .

U“ = U“” + Ul”x + Ury +- U3%2+ u4”xy
- FL&y’+.... (14]

The coefficients Sri”, T~% and ll~n are constants and

can be calculated from the primary field. For the term

kwzrys we obtain

s,.’ = — ‘-2[’”(%91,2==072 !r !S! away akn

-L% GH?)l,,==oTmm–
ar+s a.umfi=_!____

[1
—MOH,’ .=V=Z=O, (15)

72!7 !S! a.vay akn k=”

Where all derivatives are taken for x = y = z = k = O.

The subscript m can be found by inspection of (14) or

from the relation

()
v+s

‘??3= Et +s.

t=l

(15a)

We now substitute (10) and (13) in the basic equa-

tion (7). Equating equal powers of k we obtain for the

nth-order approximation, i.e., for k“, the following rela.

tions:

(3Aun aA.’
—. _ = u..
ax ay

(16)

It is interesting to note that An does depend on the

value of An–’. Consider now (16) in terms of the partial

vector potentials as defined in (11) and (12). It is read-

ily seen that the second term in these expressions,

Atn–ljn, is independent of the field coordinates x and y,

so that all its derivatives vanish identically. Summariz-

ing we find that in the calculation for An the expressions

for A’–l and A(n–l)” or, in terms of the surface currents,

the term ~–l, do not appear. From this follows that the

zero- and first-order approximation for J are not re-

lated to each other and can be evaluated from the ex-

pansion coefficients of the primary field only. For higher-

order approximations, however, we have to use the re-

sults of the previous calculations. This can be clearly

seen, if we rewrite (16) and keep only the term Ann on

the left-hand side. We then obtain

where V“,

ordinates x

v“ =

Jvn=

x“ =

Again m is

V’44Z””= v“ (17a)

v2Aunn = w. (17b)

(3AUn” aAz””
= x?? (17C)

a% – ay

W’ and Xn are functions of the field co-

and y and can be written as follows:

v“” + V1’z + Vz”y + V3”X? + Vl”xy

+V,”y’ +... = ~ V.”x’y’
?,8

w“” + Jv”l”y + W2”X + ws”y~ + w4”yx

+ W5”X’ + . . . = ~ Wm”y’x”
T,s

X“” + XI”* + x2”y + XJ’$2 + Xl”fy

+x,”y2 +...= ~ Xm”x’y’. (18)
I’,s

found from (15a).

T~n,”, W~n and X~” can be calculated from the co-

efficients Sri”, T~n and Uxn for the primary field and

from the results of the (n – 2) and lower-order approxi-

mations as will be shown explicitly in (29). The .4Zn”

and Ay”” can then be obtained from (17) by straight-

forward integration in form of power series in x and y.

The main problem is now to find a solution for the

integral equation for the current ~. This equation is

obtained from (11) and (12):

Ann(x, y)

s dx’dy’
~ J“(x’, y’)

‘% D [(3 – x’)’+ (y – y’)’]’/’ “ ’19)

Foymal solution joy the Surface Current Dist~ibution

The kind of imtegral which appears in (19) has been

investigated by Bouwkamp [45], [49], [50]. He found
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that if we write the current distribution in the follow-

ing form:

fdx’, Y’)
; 7,(X’, y’) =

7r2(a2— p’2)1/2

f,(x’> Y’):J.($’,y’) =
9r2(a2 — p’2)1/2

(/3’)’ = (1!)’+ (y’)2 (20)

where .f, and fu are polynomials in x’ and y’, the integral

in (19) is also a polynomial in x and y, and is of the same

order as ~(x’, y’). Table I in the Appendix gives a solu-

tion for the following integral:

G(x> y)

1--s f(x’, y’)dS
—— — . (21)

7+ D (a’ – p“)’/’[(x – x’)’ + (y – y’)’]’/’

The integration is over the surface D of the disk;

~(.t’, y’) is a polynomial in x’ and y’. Only terms up to

the fourth power in x’ and y’ have been calculated.

Computations of higher-order terms are possible yet

they become, in principle, extremely tedious. It is note-

worthy that G(x, y) is also a polynomial of the same

order as j(x’, y’).

In c,rder to obtain a unique solution, we have to as-

certain that the edge conditions are fulfilled. It can be

shown that they are equivalent to the requirement that

the current component normal to the edge vanishes at

the rim of the disk. The radial current is

J. = J. cos d + J. sin d = (1/P’) (.v’J. + Y’J.)

and thus we must have

L lim
X’j. + y’jv

=0
q.’o p’+a p’(a2 — P’2)1’2

(22)

l~e further require that the total charge on the disk

remains finite. The charge density u is given by

f
~=&.J=~-V.

u 7fMo (a2 – p’2)’/2

=:2[(2+1)

aj, 1

ay’ (d – /2) 1/2

if. + :y’j-.

1+ (a’ – p’2)3/2 “
(23)

The last term in (23) is only integrable over the disk if

(x’j. + y’ju) = D($’, y’) (a’ – P“) (24)

We then write for the polynomial

f’(i, y’) = f.”(x’, y’)a. + fv’(z’, y’)av

f.”(a+, y’) = ao” + a~”x’ + a2’y’ + 03”$” + a4%’y’ + aii”y”

+ a~%’3 ~ a7n.#2y’ + a &#y’2 + a9’y’3 + alo”~’t

+ all” fi’3y’ + a12nx’2y’2 + a18n.v’y’3

+ @4ny’4 + . . . = ~ a~”x’y’ (26a)
r,s

jvn(X’, y’) = ban+ b,ny’ + b,”x’ + b,ny’2 + b4’y’x’ + b,”x”

+ b~ny” + b7ny’2x’ + b,ny’X’2 + b,’x’3 + &Ony’4

-1- bll”y’3x’ + b12”y’2x’2 + bl,fiy’x’~

+ b,,”x’4 + “ o “ = ~ bm”y’xs. (26b)
1’,,

The edge conditions (24) become:

(X’j.n + Y’.f.n)

= (don+ d,ni + d,”y’ + d,”X’2 + d,nx’y’ + d,%y’2 + d#x’3

+ d,nx”y’ + ds”x’y” + d,”y”) (a2 – a!’ -- y’2). (27)

Calculations of the Cmvent Coefficients a and b

Eqs. (17)–(20), (26), and (27) deterrnine now a

total of 40 coefficients a“ and b“, if in ~(x’y’) terms up to

the fourth power in # and y’ are considered. Detailed

calculations are presented in a separate report [52].

Here a short outline of the procedure is given: the

coefficients am” and bm” are found in terms of V~”,

Win”, and Xn” defined in (17) and (18)

where D(x’, y’) is also a polynomial in x’ and y’ as will

be shown in the following calculations. Tlhis condition,

however, is sufficient to satisfy (22) and is, therefore,

equivalent to the edge condition.

The current-distribution function is now expanded in

terms of k as follows:

The prime on the subscripts m in the brackets indi-

cate that terms with a different subscript than m are

involved.

Our next problem consists in expressing 1~~’, TJ’mn,

and X~’ in terms of the field quantities s~n, Tmn, and

u“ If we use the partial vector potentials given in

(l;); (12), and (16) and keep only the terms with A“ on

the left-hand side, we obtain together with (17), (20)

and (26)

Vmn = Vmn(Smn, Um,n–z,am,~–s, . . . )

Wmn = JVmn(Trnn, bm,n-2, bm,n-3, . “ “ )

X.,” = Xm’( U.,”, am,E–2, am,n–3, . v . ,

b~L,~–z, bmr~$–3, . . . ) (29)

where only current coefficients of (n — 2) and lower order

are involved. Putting these expressions back in (28) and

replacing all the current coefficients of lower order by

an iterative process we finally obtain an expression
. .

which Involves only the field coefficients JL”, Tmn, and

U,.?

amn = arn’(Sr,’”, TrrL!n’, Um,n’)

f= fo+kfl+ k2f2+k’f’’ +... . (25) bmn = bmn(Sm,n’, Tmn’, Urnn’) . (30)
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Following (25) we define the total current coeffi-

cients by

am = a~o + lxz~l + kzanz + ,43ams + . . .

bm = bm” + kbml + k2bm2 + k3bm3 + . . . (31)

and similarly for the expansion coefficients of the inci-

(32)

The right-hand side is obtained by using (15) and

Taylor’s expansion theorem.

It turns out that all current coefficients belonging to

different powers of k“ but having the same subscript m

have the same functional dependence on S~”, Tmn, and

lln’. This allows us to write the total current ~oefi.

cients in terms of the primary field directly by using

(32). After some calculations we finally obtain

a2 {(
(3H.

ao =—PO
)

210 .2:2+—
315 dy

“=#30H+a2(-13s+’’z-’%3

d3He
33 —

ays )

(
83H% &Hz

+a2 _27
~3Hz ~3Hg

—-+ 165 —-– 150—
ay’az )

– Ioz—
d.r%z ~~3 axay’

( 3HZ aH.
+ (ka)z –168—

))
–12—

13z dx

{

d’Hg
ag=~ 22-—+6

d’Hz d2Hz
—–8— – 9k’Hz 1

aydz adz 3%2 J

( i3Hu (3HZ
+ (ka)’ –196

)1
—+168—

82 dy

8a2

(

dHv dH=
+j---pO(ku)’ ~ –—. ay ) {

r33Hz
all=~ 12

d3H0 613H,
—– 204— + 216

d3Hs

dy’dz 8X282
~+ml-

r?xay’

(

+~, ~~ ‘H’
r3Hz

)1
~+150—

d.%



7967 Eggimann: Higher-Order Evaluation of Elecfromaglnefic Diffraction by Circular Disks 413

{( dHz 8Hz

)
bo=;;~o 210 2—–—

(?2 ax

(

~3Bz 83HZ ~3Ha a~H3
+ u’ 28 — +28— –21—

ay~a~ )
–21—

8X%2 d.d Ck3yz

(

dH.z aHz
+ (ka)’ 196—

))
– 168—

dz a.~

8a2

(

dHz

)
+ j ;k0(~a)3 – ~ + ~j-

.

{ ( a2Hz azHu ~
b, = ~~ –30H, + a’ 13-— + 11-—

a~a~ )
+8:;

d~a~

)

4a’
+ 9 (ka)’H,, –jlpo(ka)’H.

{(

dHz t?H,

)
b, =&p 210 –2—+—

dz (32

(

@HZ a~Hz d3Hz d3Hz
+ ,az 52 —–44ii---+9——

~y2&
+33=

a.tay .“

(

aH. aH,
+ (ka)’ – 224 —

)}
+ 195T

az

{( aHu 8HZ
b, = ~: 210

)
—–2—

dz ay

(

3.3HY a3Hv a~H. a3H=
+ (a2 27-—— – 165 -—

8XHZ
+ 150—

)
+ lo2~~

ay% C3ys

(

aHu dHz
+ (ka)z 168

))
~+12—

ay

(

C3HV aHz

)
+ i~~0(h)3 –~ +—

ay F

{(
aHz aH, )b~= &210 –— —

az – M

(

133Hg a8Hm 8:HZ

)

133HZ
+az –ly _ +79-—–9— –33—

ayza,z awz axdyz 13X3

(

aH. aH.
+ (ka)2 –56

))
~+lsr

b~=;
{

83Hz a2Hu
–22— –2—

ayd~ a.~az + 8%}

{

132Hz
b~=;

a2H. asHz
– 14 –— + 18-— –24— – 7k2H,

d.dz ayaz dyz }

{

a2Hz d2Hu
b,=; –14—

dydz “ZZ--

WOJ d’Hz _ h :’Hv
b,= — –22-—

301.
—+

8.U3Z i?yaz

.{

a3Hz
blrj = ~

83Hz
– 80 –— + 16;=

C3y%z s

132H.
24 —

dxa~- }

a’H*
8 — + 9k2Hz

dyz }

~3He t33H4
t 12 ;X-; – 12 —

(3X3

( dHv

)

dHa \
+k’ –21— – 150—

d: a~ J“

a3H./Jo J._ d3Hz a3H= a3Hz
—–72—

b“=m ( ‘>2 >y%z – 124
+72—

a.t28z axay’ ~x3

(

13Hz 31$%

.)1
+k’ 35 T+36~F

.

‘{

d3Hv a3Hg d3H,
b,s=;; 12

83H,
—+132-— – 120 — --216 –—
13A?Z aya.z dys Way

(
aH, dHa

+kz –21—
))

– 102 —
a~ ay

( azr. 3H.
+k2 7—

)}
+15= .

az
(34)

The superscript i for the incident field has been

omitted. All magnetic field components and their

derivatives should, of course, be evaluated at the center

of the disk.

Eqs. (33) and (34) represent the solution (of our prob-

lem from which we shall derive the results in the fol-

lowing sections.
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III. INDUCED ELECTRIC-DIPOLE MOMENT

The induced electric-dipole moment is defined by

P=
s

pu(p)ds (35)
D

where

is the electric-surface-charge density and p the radius

vector on the disk.

Obviously only odd-power terms in x’ and y’ for

o-(x’, y’) (or even-power terms for J(x’, y’)) contribute

to P.

Using the results in Section II and Maxwell’s equa-

tion we obtain

The subscript O at the right-hand side of the main

bracket in (37) indicates that all terms have to be

evaluated for x = y =Z = O.

The first terms in (37) represent the well-known first-

order approximations calculated by Bethe [21].

Eq. (37) shows also that in the first-order approxima-

tion P is in the direction of the tangential electric field

at the center of the disk. The higher-order terms, how-

ever, lead to cross polarization, due to the terms

diZ.i/dy and 81Z,</dx.

For the case of an incident plane wave the electric-

dipole moment depends also on the angle of incidence

Oi and is given by (see Fig. 1)

1
– j ~ (ka)’ E.;(O, O, O)

[( )P. = fa’co 1 + ~ –~sin29, (ka)’

1
– j ~ (ka)3 Eg;(O, O, O). (38)

tx
I

I

I
Fig. 1.

The case for normal incidence has been treated by

Bouwkamp [23] Up to the fifth-order approximation.

From his current distribution, one obtains

[
P = ~a’eo 1 +: (ka)2 – j~(ka)3 + ~(ka)4

. 176

1
— (ka)’ E(O, 0, O). (39)

– 1225r

IV. INDUCED MAGNETIC-DIPOLE MOMENT

The magnetic-dipole moment is defined by

M=~ s~~P X j(p)ds. (40)

In the case of a plane disk M has only a component

.M= along the disk axis. It is easily seen that only odd

power terms in J(x’, y’) contribute.

Again we can express &fZ in terms of the primary

field

}
+j ~ (ka)3H,; . (41)

o

The bracketed term is evaluated at x = y = z = O.

For a plane wave incident at an angle 19i (see Fig. 1),

(41) becomes

{
M, = – ~a’ 1 –~(2+sin’OJ(ka)’

}
-E j ~ (ka)’ H.’(O, O, O). (42)

For normal incidence the induced magnetic-dipole

moment vanishes.
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V. FAR-ZONE FIELDS

Given the current distribution we can iind the scat-

tered field in a straightforward manner frcjm the vector

potential as given in (1). Unfortunate y a general solu-

tion of this integral is not available. It is, however,

possible to evaluate it for field points which are at dis-

tances large compared with the disk radius. In this case

we can write

“sJ exp [jkp’ sin~ cos (P – p’)]ds’ (43)
D

where R, 0, p are the spherical coordinates of the field

point, p’ and q’ are the integration variables as shown

in Fig. 1. Expanding the exponential in powers of k up

to the term k3 and using (8) one obtains an expression

for A correct to the third order in k. We express the

field i n spherical coordinates

.4, = AZcospsinz9 + AUsinpsint9

A$ = AZ COSPCOS8+ .4 Usinpcos8

A@= –Azsinp+Agcosq. (4’!)

It turns out that for large distances the field com-

ponents become

After performing the straightforward but tedious

computations one finally obtains in terms of the inci-

dent field

(46a)

~–lkR

Hv == ~ (ka)’a
{

h(vo,~ll,,a, [Ps cos p + ,Dv sin p]

+%[5sin”[:6%-’’;: cos2’

_ ~ dEzi
—sinzp+8

d.% ?+%’)sin’cos’l(—
d+6~sinz8[— Eo; cosp

/Jo

— Eui sin p]
1)

Cos 0. (46b)
o

Again all the fields are evaluated for x = y = z = O.

For a plane wave at oblique incidence we obtain

Ho== e-~R

{
~ (ka)2aH0 ~ sin di sin 0~ sinil

+

+

—

+

+

+

+

—

4 4
— cos & cos 19~sin q — — sin +* cos y
3 3

[
(ka)’ ~ (32 – 6 sin’ 0,) cos Oi cos 6’, sin p

(32 – 10 sin’ 0,) sin ~, cos p

(
sin 8 cos ~, cos 0, sin 0$ sin ~ cos q

)
- (2 -3 sin’ 0,-8 COS2p) sin o, sin O,

sin2 @
(

– 10 cos @, cos 08 sin p

(10 + 4 sin’6’J sin ~, cos p
)

3 sin379 sin I#Jisin 0~
11

e–ikR

H, = ~ (ka)’aHo cos ?9
{

; (Cos $& Cos 0; Cos $0

(47a)

+ sin A sinq)

[
+ (ka)z ~ (32 – 6 sin’ OJ cos ~i cos Ot cos P

+ (32 – 10 sin’ 01) sin ~i sin q

(
+ sin& (6 – 8 sin2 p) cos & cos 19~sin 19j,

)
+ 8 sin 4u sin 6: cos q sin q

— 1}6 sin20(cos d~ cos Oi cos P + sin +i sin p) . (47b)

Here @i and @j are the angle of incidenc(~ as ShOWn ‘n

Fig. 1. These results do not seem to agree with results

obtained by Stevenson [24]. They lead, however, to the

same expression for the scattering coefficient as ob-

tained by Lur’e [19] and Kuritsyn [20].
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VI. SCATTERING COEJWICIENT FOR INCIDENT

PLANE WAVE

The scattering coefficient ~ is defined as the ratio of

the energy scattered from the disk to the energy inci-

dent on the disk. The scattered energy is found by inte-

grating the Poynting vector of the scattered field over

the sphere at infinity.

ITsing (47) one finds for an incident plane wave

q- . ———
ra2H02 cos 0,

——

128 { ‘( )27T2 ..s ~. (kU)’ 1 + sin’% ~ sin’ ~, _ 1

+ (ka)’
— [(22 -5 sin’ 0,) .0s’ O, .0s’ @

25

}
+ *(88 – 54 sin’ Oi – 5 sin’ 0,) sin2 ~,] . (48)

For normal incidence Bouwkamp [23] obtained

7512
+

1
~ (ka)’ + 0(ka)6 . (49)

A general expression for r for arbitrary primary- fields

would involve the separation of the real and imaginary

parts of the incident fields and their derivatives at the

center of the disk. The resulting expression would be

very cumbersome and of little practical value.

VI 1. DIFFRACTION BY ~ CIRUJLAR APERTURE

Using the results of the generalized Babinet’s princi-

ple [51 ] it can be shown that the disk problem and the

aperture problem are equivalent

stitutions are made

substitute p&&P~~t.~~

substitute — 60 ~Ap,,~u,~

substitute pOMAP,,t~.~

substitute PAQe,h,,re

if the following sub-

for ~lJ~iDi,~

for /JO~iDISk

for PDi~k

for /.LO~Di,~. (50)

It is customary to designate as primary field EO, Ho

the field which would exist if the aperture is replaced by

a solid screen. We obtain thus

E$i = $EZO

Ht.n = ~Hti.nO.

This leads to the following expressions for

duced electric and nlagnetic dipole moments:

{ [

1 d2E$0
Pc = ~a3eo E,(’ – ~ (ka)’ 3E,(’ + — —

k~ &2 1
+j’~(ka)’E,O

1

Mz=Aa3 f?”+~ 13HC0-~~~ 0
3 { 30 [ k2 &2

2j dEZO
—

o.lpll dy 1
– j ~ (ka)3HZ0

)

‘=:a3{H0+?[’3H0-+s 0

(51)

the i]l-

(52)

The bracl<eted terms are evaluated at the center of

the aperture.

The scattering coefficient t of an aperture is usually

defined as the ratio between the energy incident on the

aperture and the energy transmitted through the aper-

ture. We obtain thus

l=~T (54)

where r is the scattering coefficient of a disk given by

(48).

APFEN~IX

EVALUATION OF INTEGRALS

In the foregoing discussion we need to evaluate some

integrals of the form

G(x, y)

-s f(x’, y’)
—

Disk~2(~2-*’2-
dS’ (55)

y’7q(x-#)2+ (y-y ’)9m

~,here ~(x’, y’) is a polynomial in # and y’. Bouwkamp

[50] has given a solution for this kind of integral in the

form:

Ssa 27r ~~~((a2 — p’2) 1/2) ((X — %’) 2 + (y — y’) 2)P’2 Cos (2~@’) ~,~p,~p,

J(% ~, Y; P, P) =

00 (a’ – P’2)’12((x – *’)2 + (y – y’)’)’/z

= X Ati(n, m, p) Pt((a2 – p2)’/2) cos (2wzp)
v

(56)
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T.lBLf3 I

G(x, y) = JO”f,2”––--–~~~fl~d~~:--––––
7r2(a2 -- p’2)1/2[(z — X’)2 + (y –- jI’)2J1/2

where

G(x, y)

1

1
—~
2

; [w+ 5.,’ – y’]

3
— .r.v
8

lo2.t’y’ + 9y’]

~lZ [48a’+ 16x2a2 + 16Y’U2– 17.,’ + 246.V2Y2– 17Y’]

~!2 =Jz+ytz <a2
—

/p=x2+y2<a2

o<p<27r

.P~~ = associated Legendre functions

n, m :r and ~ = integers subject to the condition p >0,

0<’m<n.

The coefficients .4, are:

.4.(?Z, ?n, W)

f(.~, Y)

(2]

[.3]

[4]

/5]

T.kBLE II

VZG(X, Y)
.—_— ________________

I

o

0

1

7i-

0

9
— .X
8

+Y

; [2U’ + 19X’ – y’]

225

% ‘y

; [2a’+ 91’+ 9;,’]
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