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forward and reverse propagation. In the fgure it is
shown the attenuation for the empty guide, z.e., for the
same guide without the slab of ferrite.

Let's follow the forward propagation experimental
curve from left to right. When the slab of ferrite is
against the left side wall the attenuation is at a mini-
mum. By moving the slab of ferrite away from the wall,
after a region of low attenuation, the signal goes very
rapidly below the level of the attenuation of the empty
guide. This is justified by the theoretical results of Fig.
4 and by the considerations about the group velocity.
In fact, beyond the distance by, no propagation can exist
and below such a distance always exists a propagating
mode with group velocity in the forward direction.

Moving the slab further away from the left side wall,
the signal remains at a level below the empty guide
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attenuation level until we reach a distance approxi-
mately equal to b —b;— b, when the attenuation begins
to decrease and then, after it has reached a minimum,
increases again above the empty guide attenuation.
This last behavior is easily explained by the theoretical
results, since beyond the distance b—b,—b,./, energy
begins to pass in the forward direction through modes
having positive group velocity. However, since these
modes have propagation constants going to — « as the
slab of ferrite approaches the right-hand side wall and
cannot therefore allow propagation in the limit, the
minimum of the attenuation experimentally found is
explained.

From the preceding discussion we can conclude that
there is good agreement between theory and experi-
ments.

Higher-Order Evaluation of Electromagnetic
Diffraction by Circular Disks*

W. H. EGGIMANNT

Summary—The problem of the diffraction of an arbitrary electro-
magnetic field by a circular perfectly-conducting disklhas been
solved by using a series representation in powers of k=2r/\ and the
rectangular disk coordinates. The surface current density is given in
terms of the field and its derivatives at the center of the disk. General
expressions for the electric- and magnetic-dipole moments, the far-
field and the scattering coefficient for the case of a plane wave at
arbitrary incidence are presented. The calculations agree with results
published by other authors. A bibliography of the most recent publi-
cations on this problem is included.

I. INTRODUCTION

HE problem of the diffraction by a circular con-

ducting disk (or the complementary problem for

a circular aperture in an infinite plane conducting
screen) has occupied many workers in the field of dif-
fraction theory. The problem can be formulated as
follows:

1) the electromagnetic field has to obey Maxwell’s
equations,

2) the boundary conditions on the surface of the disk
have to be fufilled, e.g., for a perfectly-conducting
disk the tangential electric field must vanish,

3) the edge conditions [48] at the rim of the disk have
to be obeved; they require that the field energy
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remains finite, or that the energy density has to
be integrable over any finite space. This leads to
the requirement that the normal component of
the electric field increases not faster than (1/r)%2
where 7 is the distance from the edge,

4) Sommerfeld’s radiation conditions [47] have to be
fulfilled.

In this paper a power-series solution in (ka) valid for
the small disk problem (a <\/27, where a =disk radius,
A ={ree-space wavelength) and an arbitrary incident
field is given. It is essentially an extension of a proce-
dure described by Bouwkamp [45]. The surface cur-
rent density on the disk up to the third-order approxi-
mation in (ke) is calculated in terms of the electro-
magnetic field and its derivatives at the center of the
disk. From these results expressions for the induced
electric and magnetic dipole moments and the far-zone
fields are derived. The scattering coefficient for a plane
wave at arbitrary incidence has been calculated in agree-
ment with formulas given by Lur’e [19] and Kuritsyn
[20]. The essential advantage of the expressions ob-
tained in this paper is that they can be used for any
primary field. This is important in the case where in-
teraction between several disks is considered. If the
spacing between the disks is not large compared with
the wavelength, the interaction fields cannot be ap-
proximated by a plane wave and the interaction be-
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between the induced dipole moments and higher-order
multipole moments have to be taken into account.
Some of this work will be reported at a later date.

II. POwWER-SERIES SOLUTION
General Formulation

We shall consider a perfectly-conducting circular
disk of radius a¢ with its axis along the g direction as in
Fig. 1. The magnetic vector potential A(R) for the dif-
fracted field is given by

AR) - fDﬂp) s 1)

where j(p') is the electric surface current density and
the integration is carried out over the disk D. R and p’
are the coordinates of the field point P(x, v, 2) and the
surface element d.S’ respectively, while r is the radius
vector from 45’ to P(x, v, z). The time dependence
et is omitted throughout. The scattered field is found
from the following relations:

1
H=—-VXA (2)
Mo
VV-A
E= — joA + . (3)
JWHo€En

The boundary conditions are satisfied if

E.R) = — E,;(R)
E,R) = — E,*(R) on the disk €3]
H.(R) = — H,/(R)

where the superscript 7 indicates the incident field. We
now express (2) and (3) in rectangular coordinates and
combine them with (4)

1 /04, 4., .
H,=— — = — H; (5)
mo \ 0x dy

. 1 d d.d, ad,
]zr = — ]wA.E + R “( _I_
Jwpoey 6X dx ady

1 A, 9 (04,
4 (T
Jwito€y dx? c')y Gy

= — jod, +

) oH," L
= — jwd, + - Vag® s — po — Jopoen g
Jweéotto 03
= - E:ct (6)
ag ag . ~ . .
V2t = —— - — is defined as the two-dimensional
A dy?

Laplace operator.
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In (6) we used (5) and Maxwell’s equations for E,*. A
similar expression as (6) is obtained for E,. These equa-
tions can now be written in the form

JH,}
Vo 2ds + B4y = wo
0z
oH,: .
V_szly + k?‘:ly = — Mo on the disk
ad, 04, . ™
J— _— ”’ zl
v dy ’

where k& =w(uo€0)!? is the free-space wave number.
Eqs. (7) are the basic differential equations which we
shall solve for the vector potential A(x, v) on the disk.
Knowing A(x, y) we then obtain the surface-current
distribution J(x’, ") from the integral equation (1).
In order to obtain a unique solution the conditions
1)-4) in Section I have to be [ulfilled. Conditions 1) and
2) have been taken care of in (2)—(4). The edge condi-
tion 3) will be fulfilled by assuming a suitable current
distribution on the disk, and the radiation conditions
4) are secured by (1) for any finite current distribution.
In the following we attempt to find a power-series
solution for the current J in terms of (ka), which is ex-
pected to converge well for small disks where (ka)
=2m(a/N) <1 or a<A/2m (\=Tree-space wavelength).
Trirst, we consider an expansion of A, J and the right-
hand side of (7) in powers of (k). We obtain the follow-
ing expressions:

J= T+ R+ B+ BT R (8)
Jeke = 0 4 k(" = jrJ") + B2 = jr] = 1/27")
B = jrJ? = 122+ 1/6j5))
R = gt 12 4 16

AR e (9)
A= A+ RA' + PPAY 4 BPAR A+ AL - (10)
where
A0 — @f Jo ds
drdp v
Mo j ds ) l
Al:rﬂ‘f T 14S
Jar ‘l ])] ¥ J uf{;)] (
a8
A = o J,f‘]z—_ -4 []1(15 — l,r”Zf]UrdS}
47r1 D T < p D J
dS
a2 == fj?ds - L/’folrdf;
47r1 p Jp )

+1/6j f Joreas':
» f

Moy (l’S . o e , 0 70t
At = — Jt——j 1 J}dS — 172} JvdS
d D 7 Jp D

-+ 1/’6jf JrdS + 1/"24][ ]“rWS} o
D D
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For simplification we adopt the following notation:
A0 = A00
Al = All — jAQ
A2 — A22 _jA12 — 1/2A02
Al = A% — jA® — 1/24% | 1/6/A%
At =AM — jAR — 1/2A% 4 1/67A™ + 1/244% (12)

where the partial vector potentials A™* are defined by
(11) and (12).

dH,’

. = 50 4 ST+ R252 4 %3S 4 . . .
oH,’

— 1o p = TO+ kT + B2T? 4+ B3T3 4 - - .
2

—poll, = U+ kU + BRUP + BUP + - - - . (13)

The coefficients .S?, 7™, and U” in (13) are, of course,
functions of the field coordinates x and y and can, there-
fore, be written as

Sn = Sy + Syrx + Sy ++ Sya? + Syray

+ S5y + .-
I =T+ Ty + Torx + Tyy* + Tumyx
+ Ty 4 - v
Ur = Uy + Uz + Uy + Uss® + Usrxy
+ Usmy> + - - - (14)

The coefficients S,?, T" and U," are constants and
can be calculated from the primary field. For the term
k*x™y* we obtain

s 1 orts o T <6Hyz>]
m = — o L=y g
nlrls! dxrdys kL °\ oz o0 '

Tmn = 1 aH—s a" _—/J,[) <6H~’/1>} P==y=z=0
nlris! dardys Ak~ L dz =0

Umn — 1 grts an __'UOH::l U (15)
nlrls! dx7dy® dun L k=0

Where all derivatives are taken for x=y=z=k=0.
The subscript # can be found by inspection of (14) or
from the relation

(15a)

r~+s
m = ( Z t> + 5.
t=1

We now substitute (10) and (13) in the basic equa-
tion (7). Equating equal powers of & we obtain for the
nth-order approximation, i.e., for £, the following rela-
tions:

VoA 42 = Sn

ViAo A2 = T
A, 94
ax 9y

= U,

(16)
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It is interesting to note that A" does depend on the
value of A»2. Consider now (16) in terms of the partial
vector potentials as defined in (11) and (12). It is read-
ily seen that the second term in these expressions,
AC=Dr s independent of the field coordinates x and vy,
so that all its derivatives vanish identically. Summariz-
ing we find that in the calculation for A" the expressions
for A*'and A7 or, in terms of the surface currents,
the term J*»7%, do not appear. From this follows that the
zero- and first-order approximation for J are not re-
lated to each other and can be evaluated from the ex-
pansion coefficients of the primary field only. For higher-
order approximations, however, we have to use the re-
sults of the previous calculations. This can be clearly
seen, if we rewrite (16) and keep only the term 4" on
the left-hand side. We then obtain

VA = Vs (17a)
V24, = P (17b)

aAyrm annn
— = X (17¢)

dox dy

where V*, W" and X” are functions of the field co-
ordinates x and y and can be written as follows:

Ve = Vo + Vit + Vory + Virx? + Viray
+ VEﬂy‘l _I_ [ Z anxrys

We = We + Wty + Ware + Winy? + Wiryx
+ H/5nx2 + o= Z I/I/m"yrx3

Xm = X + X" + Xy + X5 + Xyay

+ Xt = 20 Xy, (18)

Again m is found from (15a).

72", W and X" can be calculated from the co-
efficients S»®, Tw* and U," for the primary field and
from the results of the (#—2) and lower-order approxi-
mations as will be shown explicitly in (29). The 4,
and 4, can then be obtained from (17) by straight-
forward integration in form of power series in x and v.
The main problem is now to find a solution for the
integral equation for the current J». This equation is
obtained from (11) and (12):

Arn(x, y)
_ ko i dx'dy’ .
= 47rfDJ (x, 3’) [(%‘ _ x/)z € (y o y/)z]uz

(19)

Formal Solution for the Surface Current Distribution

The kind of integral which appears in (19) has been
investigated by Bouwkamp [45], [49], [50]. He found
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that if we write the current distribution in the follow-
ing form:

; x/’ ’

B ) = 2

4 w2(a® — p'?)1/2
x/, A

By y) = a2

ir w(a — )

()= () + )
where f, and f, are polynomials in #” and y’, the integral
in (19) is also a polynomial in ¥ and y, and is of the same

order as f(x', ¥'). Table I in the Appendix gives a solu-
tion for the following integral:

G(x,y)

(20)

/ ’
=if f&'y y1)dS o

w2 p (@2 — o) 2[(x — )2+ (y — )21

The integration is over the surface D of the disk;
f(x', ¥) is a polynomial in x" and 3'. Only terms up to
the fourth power in x’ and 3" have been calculated.
Computations of higher-order terms are possible yet
they become, in principle, extremely tedious. It is note-
worthy that G(x, ) is also a polynomial of the same
order as f(x’, ¥').

In order to obtain a unique solution, we have to as-
certain that the edge conditions are fulfilled. It can be
shown that they are equivalent to the requirement that
the current component normal to the edge vanishes at
the rim of the disk. The radial current is

Jr=Jscos ¢ + Jysine = 1/ T+ ¥'7,)

and thus we must have

4+ ©fe + ¥y
—lim — =
o wa p' (0% — p)Y?

(22)

We further require that the total charge on the disk
remains finite. The charge density ¢ is given by
J j 4 f
g=2-V =" — Ve
(a‘l — p’2)1/2

4 [(% +6fy> 1
B oo L\ 0 8y'/) (a® — )11

¥fs y_'f:_il 23)

(a2 — p'2)32
The last term in (23) is only integrable over the disk if
@fs + V1) = D, y) (@ = o) (24)

where D(x/, 3') is also a polynomial in x" and y’ as will
be shown in the following calculations. This condition,
however, is sufficient to satisfy (22) and is, therefore,
equivalent to the edge condition.

The current-distribution function is now expanded in
terms of k as follows:

£=f 4 b+ B+ R+

(25)
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We then write for the polynomial

fr(o, ') = f (o', y)as + fi" (&, ) ay

fS@ ) = a0t + a4 0y + 0w + e’y + asmy”
+ aga’® + arx'?y' +asn'y + ag™y'S + a1’
+ aimdy - a2yt 4 am'y’

+ayyt o= Z BTy’ (26a)

fr (@, 8 = bor + by + bara 4 bsmy'? 4 by’ + bsa?
+ bery'® + by’ - bey' w2 4 bena'? - biomy'
+ bumy' 3"+ by 22 4 bysty'a"E
bt 4 = D by, (26b)

The edge conditions (24) become:

(X’fz" + y/fyn)
= (dy» + di"x’ + dony' + dsra'? + donx’y + dgry'? - dee'?
y y
+ dpa'y 4 dgra'y'? + dgny'®) (a? — a2 — ). (27)

Calculations of the Current Coefficients a and b

Egs. (17)—(20), (26), and (27) determine now a
total of 40 coefficients a” and b, if in f(x'y") terms up to
the fourth power in &” and 3" are considered. Detailed
calculations are presented in a separate report [52].
Here a short outline of the procedure is given: the

coefficients a,” and b,* are found in terms of Va%
Wy, and X, defined in (17) and (18)

an = @y (Vo™ W, X ™)

bmn = bmn(Vm’n, Wm’n, Xm/n) (28)

The prime on the subscripts 7 in the brackets indi-
cate that terms with a different subscript than m are
involved.

Our next problem consists in expressing V,”*, Wa",
and X, in terms of the field quantities S»*, 15", and
U.* If we use the partial vector potentials given in
(11), (12), and (16) and keep only the terms with A" on
the left-hand side, we obtain together with (17), (20)
and (26)

an = an(Smn, am/n~2’ am,n*b” ST )
Ian — wrmn(Tmn, bm,n——2’ bm,n—li’ e )
Xl = an(Umn; am'n_27 am'n_3) D]

bm,ng‘l, bm,n——S, P )

(29)

where only current coefficients of (z—2) and lower order
are involved. Putting these expressions back in (28) and
replacing all the current coefficients of lower order by
an iterative process we finally obtain an expression
which involves only the field coefficients Sn*, Tw", and
U

amn<Sm'nl, Tm’n,; Ijm’n,)
DSy Ter™'y Um™).

n™ =

om™

I

(30)



412

Following (25) we define the total current coeffi-
cients by

G = Gp° -+ kant + R%a,’ + £’ + -

b = bmd 4 kbyt 4 k20,2 + %0 + - - - (31)

and similarly for the expansion coefficients of the inci-
dent field

© 0 kn an 6r+s
Sm = EnSyr = {— [
zzz ,Lgo n! k™| dxdys
< GHZ,%)]l 1
A o . —
05 /1S mpsico 715!
ilanas (5]
= Mo
rislLd79,8 9z gyt
0 © kn an aH—s
T, = T, = {_ [ -
ngt) E n! 0k™Ldxdys
1
o —u .
’ dz [ zeymzkm0 718!
oy (2]
= — — 10
rist Loy dxs Jz Sy 20
0 © krz an 67+x
Um = an’m” = {_“ *“[
nz:;) n};o ! k™ L0y dx®

1
: (_IJ*UH;/Z) } ——
g=y=r=k=0 rlis!

1 I: grts ( . )]
— —u .
ristLoydxs ’ s—y—im0

The right-hand side is obtained by using (15) and
Taylor’s expansion theorem.

It turns out that all current coefficients belonging to
different powers of k* but having the same subscript m
have the same functional dependence on S,*, 7,.*, and
Un". This allows us to write the total current coeffi-
cients in terms of the primary field directly by using
(32). After some calculations we finally obtain

a’® oH, JdH,
ay = uo{210(-—7*—+ >
315 oz ay

da%H, 9%H,

{

(32)

0 H, 9% H,
+a?| —28 — 28 + 21—+ 21 ——¥>
dx%dz dy°9z dy? dxdy

oH, 0H,
+ (ka)*{ —196 >}
0z dy
Ty 8a? * )3(6Hy aHz>
— a -
I O Fo 0z dy

a? 3°H, 9*H, 92H,
a; = —ug4 —22 -2 + 8 }
30 0%9z Vo3 dxdy

IRE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

September
Mo 2Hy GZHx asz
ay = —<30H, + o2 + 11 -8
30 ayaz 0.x0z dx?
ta?
- <ka>2Hz} 522 k.
or
, Oty ol
as = 210 —
315 3z dy
8*H, 9%H, 93H, 9%H,
+ a*| —52 + 44 -9 — 33
%%z ayzéz x99y dy?
ot
Buo H,
+j— (ka)g
a = ﬂf 210< )
315 1
3*H, _9*H, *H, sh,
+a? | —27 + 165 — 150 — 102 >
vz dx20z 93 dxdy®
oH, dH,
+ (ka)2{ —168 — 12 }
0z Jx
8#0 aHx aH4
+J—~(ka)‘< ~~~>
dz dx
Mo 0H aH
@5 = — 3210 —% ¢ %
315 dz dy
a*H, 9*H, 9H, aH,
+a* 17 - - 9 + 33 )
9x%dz dy* 9z 0x?dy dy?
¥ - aHz \l
+ (ka)?( 56 — 13
Jz dy /(
M a2 9*H, 9H,
as = —“{22 SRR W }
30 dx0z dydz dxdy
wo ( 0%H, 9°H, 9,
a7 = —< 14 — 18 -+ 24 + 7k2Hz}
30 dydz 9x0z da?
wo (. 0%H, 9H, OH,
ag = —< 14— — 6 + 24 }
30 0x0z dydz dxdy
e 0*H, J9*H, 9*H,
a9 J{zz— Z+56 -3 ok,
30 dydz dxdz Jx? f
u 9 H O H 9 M, O H,
awz—O{so L 16—t — 12 + 12
315 x93 0y?9z dx?dy ay?
dH, 0H,
+r2( —28 + 97 >}
Oz dy
Mo 9*H, d*H, 0*H, 9H,
an=—-<12 — 204 —|— 216 + 120
315 vz dx? e’ Jdxd y*
d0H, dH,
-+ R%| 21 -+ 150 >}
dz ox
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Mo 3% H, 9 H, 8 H, 8°H,
app = —<52 -+ 124- + 72 - - — 72
315 Ix?dy 9y*9z 0x%9y ay?
_0H, oH,
+ k? — 36
Jz dy
o j 9*H, 9*H, dH, d*H,
ayg=——+—12 —132 +120 -+ 216
315 | 9y*z dx%d dx Axdy*
+ B (z1 e 10221 >}
/ 9z T ox
o 93, 9, O°H, 9 H,
ayy = ——{—— 68 — 12 -+ 12
315 120z Y0z 9529y ay3
oH, OH.
+ k2 =7 —15 } . (33)
dz dy
5 a? {210 <2 JH, (:)HZ>
" 315”0 0z ox
0*H, o H, 0*H, d*H,
+ a? (28 -+ 28 — 21 — 21 >
dy*93 9x29g dx? dxdy?
d0H, JdH,
+ (ka)2<196 — 168 )
dz dx
ny 8a? " )3< oH, + GHz>
i — no(ka)®{ — —
T Or ’ 0z dx
o 9°H, 9°H, A
by = g 22 +2 — 8
30 oyads 0xd3 axayf
o OZHx 9%H, 0%H .,
by = —30H, + a* + 11 + 3
30 Gxé)z 9395 ay*

9

da
-+ 9 (ka)QHA,} -jg—uu(leaﬁHf,
-

/J,O aHx (')Hz
bs =———{210<—2 -+
315 dz dx

9*H, *H, 0*H, 3%H,
+ a?{ 52 — 44 +9 33
dy?9z dx%9z dxdy? dx?
oH;
+ (ka)?| —22 195
dx

+ 8o (k )3(61’{1 8H2>
7 ¢ dz dx

0H 0H,

by = 2 {210( — >
315 0% dy

3 83 3

0%H, ; H, 9%H,
+ a2 27 - — 165- + 150 + 102
%293 0y?ds ay? 3 v"ay

SO
oy
oH,

al,
o)
0z ay

+ (o (

8
+ § —uo(ka)? <—
Or
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OH, oH,
by = 42 {21 < — )
315 0z ox

9°H, 8*H, 9*H, 9*H,
+ a?{ —17 + 79 -9 — 33
dy?93 9x%0z dxdy* ax?

dH,
+ (ka)?| — 1¢
ax /)
Mo ang 62Hy 62Hz
by = —{—22 —2 + 8
30 dydz 0x0z dxdy
Mo aQHz 32Hy 62Hz
by = —< —14 - + 18— — 24 — 7Rk*H,
30 9x03 9y03 ay?
02H, 0?H 9*H,
bs = ﬂ{—14 L -———}
30 dydz 0xdz 0xdy
M 0*H 0’H,
P AT 9k21-'12}
300 77 axos 990z 9y?
Ko d*H, *H, ¥H, dH,
b10=—d{—80 + 16 + 12 —12
313 9y*dz x93z dxdy* dx?
0H, dH,
+ k2| 28 — 27
dz dx
o d%H, O H, O H , &H,
bii=—— 12~—-~}— 0f—— — ’)16~~~ - 120——
315 dx%dz dy?9z ay? dx?dy
dH, IH\\
+ k2 —21 — 150 -
9z Oy j
o j 0%H 03H, 0%H . 0°H,
1p=_—-14—52- — 124 — 72 + 72
3150 77 oy 9129z dxdy? ax?
0H, o,
+ &*{ 35 + 36 w—~>}
ds Jox
d%H, A H, 9%H, d*H,
b13—~—— 12 }-132 — 120 -~ 216 —
315 dx?0z dy*dz ay? ox*dy
oH, oH,
+ &* <——21 2 }
0z ay
9*H,

m 0%H, 9 H, 0*H,
b14 = — 68 12 —

o 1
3150 9y%s= dx9z 9x0y? dux?

dH,
4 k2< +152 )}
0% ax

The superscript 4 for the incident field has been
omitted. All magnetic field components and their
derivatives should, of course, be evaluated at the center
of the disk.

Egs. (33) and (34) represent the solution of our prob-
lem from which we shall derive the results in the fol-
lowing sections.

(34)
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I1I. InpuceEp ELEcTRIC-DIPOLE MOMENT

The induced electric-dipole moment is defined by

P =fpa(p)dS (35)

where

c=21v.J (36)
w

is the electric-surface-charge density and p the radius

vector on the disk.

Obviously only odd-power terms in x’ and 3y’ for
o(x’, v') (or even-power terms for J(x', 3')) contribute
to P.

Using the results in Section II and Maxwell's equa-
tion we obtain

16 - (ka)? . 3 J2E;!
P, =—ad’e| ES 13E, — —
3 30 k* 932
27 OH,® 84
_l_ > ““—](kd)aEzi:l
wep Iy Or 0
» 16 . [E o (ka)2<13E ) 3 9E,*
=—gq i .
T T TR
2j ol 87 )
- — —(ka) 3EQ/} . 37
wey 0% 97 0

The subscript 0 at the right-hand side of the main
bracket in (37) indicates that all terms have to be
evaluated for x=y=2z=0.

The first terms in (37) represent the well-known first-
order approximations calculated by Bethe [21].

Eq. (37) shows also that in the first-order approxima-
tion P is in the direction of the tangential electric field
at the center of the disk. The higher-order terms, how-
ever, lead to cross polarization, due to the terms
0H,i/dy and 0H,/dx.

For the case of an incident plane wave the electric-
dipole moment depends also on the angle of incidence
0; and is given by (see Fig. 1)

P 1 (B L)
s = —a — — ——sin%f, 2
30 15 10 ¢
.8 ,
—J——@@ﬂEAQQO)
Or

16 8§ 1.
m=?&oH—E—Zm%yM2

'Sk?‘EiO
—y;(@] (0,0,0).  (38)
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The case for normal incidence has been treated by
Bouwkamp [23] up to the fifth-order approximation.
From his current distribution, one obtains

. 163[1+8(k)2 8 18
= —q - a)? — 4 — —_—
37 15 7 g Wke)® & 105 (k)

IR
J£§<@]Mmmw (39)

1V. InpuceEp MAGNETIC-D1POLE MOMENT
The magnetic-dipole moment is defined by

1
M=— f p X j(p)dsS. (40)
2Jp
In the case of a plane disk M has only a component
M, along the disk axis. It is easily seen that only odd
power terms in J(x', ¥') contribute.
Again we can express M, in terms of the primary

field
a*H J:I
i

4
+j—wmw34>.
Or

0

M, =

Saa{Hi " (k| 3m 4 2
3 U7 10 a[ Ry

(41)

The bracketed term is evaluated at x=y=2=0.
For a plane wave incident at an angle 6; (see Fig. 1),
(41) becomes

8 1
M, = — ?‘13{1 _16 (2 - sin? 6,) (ka)?

4
+j— (ka) 3} H.,(0,0,0). (42)
Ir

For normal incidence the induced magnetic-dipole
moment vanishes.
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V. Far-ZoNke F1ELDS

Given the current distribution we can find the scat-
tered field in a straightforward manner from the vector
potential as given in (1). Unfortunately a general solu-
tion of this integral is not available. It is, however,
possible to evaluate it for field points which are at dis-
tances large compared with the disk radius. In this case
we can write

e—}k r o e——ﬂcR

A=ﬂfj s’ Ll
47!' D ¥

R— w4r R
. f Jexp [7kp’ sind cos (¢ — ¢")]dS’ (43)
D

where R, ¢, ¢ are the spherical coordinates of the field
point, p’ and ¢’ are the integration variables as shown
in Fig. 1. Expanding the exponential in powers of & up
to the term £® and using (8) one obtains an expression
for A correct to the third order in k. We express the
field in spherical coordinates

A, = Azcos psind 4 A, sin ¢ sin ¢

Ay = Az cospcosd + A, sin ¢ cosd

A = — Azsinep + Ay cose. (44)

It turns out that for large distances the field com-
ponernts become

N i
Ha=—<——0> B =22 4,

Mo Mo
o\ 12 ik
Ho = (w Ey = — "= 4. (45)
Mo Ko

After performing the straightforward but tedious
computations one finally obtains in terms of the inci-

dent field

- 1 [ |
Hy = ka)la————— | —Pycos¢ + Pysing
Y TR (ka) {4(#060)1/203 !
+ si 0[ ! M * (ka)2H ;¢
sin —— M, — — (ke 2*
4q3 45
bk >°[ O cost o+
@)’ — cos? ——sin? ¢
/ 45we dy ¢ dx
<6Ej 6Ey1> . :|:|
=+ — Sin ¢ COS ¢
ox oy
—I—Z(k)‘)'?ﬁ[(S ?OE._{_.Z@HZL')
— (ra)” sin — [t —_ Ccos ¢
15 v VT Tos
ey 2 8H\ |
+<—5 — B4 >sm<p}
Ko k 9y

1 :
by sin® #(ka) ZH,J} (46a)

4

Eggimann: Higher-Order Evaluation of Electromagnetic Diffraction by Circular Disks

415
eIkE 1
= — (ka)?@¢{—————— | Py cOS ¢ + P, sin
’ TR (k) {4(14060)1/203 [ ¢ vsing]

ka)T 7 AE, AE,

+ (ka) [l— sinz?li—é — 8—"cos?e
45 Lo Jz Jdy
AE; IE;:  JES\ |

— 8 sin? ¢ 4+ 8 + sin ¢ €os @
dx dy ox

&
+ 64/~ sin28[— Eai cos ¢

Mo
— E,isin go]]} cos .
0

Again all the fields are evaluated for x =y=2=0.
For a plane wave at oblique incidence we obtain

(46D)

L

2
ka)2aHy<— sin ¢; sin 6, sind
Rz (ka) 0{3 ¢

H{, ==

™

+ ? cos ¢, cos @;sin @ — ? sin ¢, cos ¢

1
+ (ka)? I [(32 — 6sin?8,) cos ¢; cos §;sin ¢
— (32 — 10sin24,) sin ¢, cos ¢

-+ sin (8 cos ¢, cos @, sin B, sin ¢ cos ¢

+ — (2 — 3sin?0; — 8 cos? o) sin ¢, sin 0i>
- sin?¢ (— 10 cos ¢, cos 8, sin ¢

+ (10 4+ 4 sin?#8,) sin ¢, cos go)

— 3 sin®$ sin ¢; sin H{I} (47a)
— kR 4
0 = 2 (ka)*aHy cos & {? (cos ¢; cos b; cos

T

+ sin ¢, sing)

+ (ka)? :llg [(32 — 6sin?8;) cos ¢; cos f; cos @

4+ (32 — 10sin?0;) sin ¢; sin ¢

+ sin z?<(6 — 8sin? @) cos ¢, cos §; sin B;

-+ 8 sin ¢; sin ; cos ¢ sin (p)

— 6sin2d(cos ¢; cos f; cos ¢ -+ sin ¢, sin go):\} . (47b)
Here ¢; and 6; are the angle of incidence as shown in
Fig. 1. These results do not seem to agree with results
obtained by Stevenson [24]. They lead, however, to the

same expression for the scattering coefficient as ob-
tained by Lur’e [19] and Kuritsyn [20].
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VI. ScaTTERING COEFFICIENT FOR INCIDENT
PrLAaNE WAVE

The scattering coefficient 7 is defined as the ratio of
the energy scattered from the disk to the energy inci-
dent on the disk. The scattered energy is found by inte-
grating the Poynting vector of the scattered field over
the sphere at infinity.

Using (47) one finds for an incident plane wave

b T
f f Re (| Ho |2 + | He|?) sin 9dvde
0 0

T =

na’H? cos 0,

128 (k)4{1+,00<5.2¢ 1)
= (ka sin? 6; | — sin? ¢, —
277% cos 6; 4
(ko)? |
+ 5 [(22 — 55sin28,) cos’ 8, cos? ¢;

+ 1(88 — 54sin?4; — 5sin*4,) sin? 4»-]} . (48)

For normal incidence Bouwkamp [23] obtained
= o1+ 2 oy
T e 25 "

4 P <k>4+o<k>ﬂ 49)
18375 " ° 2 B

A general expression for 7 for arbitrary primary fields
would involve the separation of the real and imaginary
parts of the incident fields and their derivatives at the
center of the disk. The resulting expression would be
very cumbersome and of little practical value.

VII. DirrracTION BY A CIRCULAR APERTURE

Using the results of the generalized Babinet’s princi-
ple [51] it can be shown that the disk problem and the
aperture problem are equivalent if the following sub-
stitutions are made

substitute uoH s perture for e E'piex

substitute — €y Eéaperture for woH'piex

substitute poMapertare for Ppisk

substitute Paperiure for poMpisk. (50)
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It is customary to designate as primary field E9, H°
the field which would exist if the aperture is replaced by
a solid screen. We obtain thus

Ezi = %Ezo

H,, = %H’oano- (51)

This leads to the following expressions for the in-
duced electric and magnetic dipole moments:

- {F L )"[3E“+ : BZEﬂ
.= —abepR B, — — (ka)? 5 —
30" 10 B oz
4
+ 75— (ka)3E20} (52)
971' 0
(ka)? 3 9:H,°
My =—a* H'+ [13 = —
k2 9z
2j 9B, 8
NER I -
why 0 Or 0
(ka)? 3 9°H,°
My =—a{Hp+ 138, —
k2 0z?
27 OE.°

] —j; (ka)3Hy°} - (83)

wiy 0%

The bracketed terms are evaluated at the center of
the aperture.

The scattering coefficient 7 of an aperture is usually
defined as the ratio between the energy incident on the
aperture and the energy transmitted through the aper-
ture. We obtain thus

L= %7 (54)
where 7 is the scattering coefficient of a disk given by
(48).
APPENDIX
EvaLuation oF INTEGRALS

In the foregoing discussion we need to evaluate some
integrals of the form

G(x, )
_ f &, ¥)
Disk 7T2(a2_x/2_y/2)1/2<(x_x/)Z_[,_ (y_y/)2)1/2

as’  (55)

where f(x', ") is a polynomial in " and 3". Bouwkamp
[50] has given a solution for this kind of integral in the
form:

s po P((a? — p)M ((x — #)2 4 (y — y) )42 cos (2me)
[<”, ", u; p, W) =
0 0

p,dp’dgo’

(@ = p) (@ = )+ (y — )

= 3 Ayl m, 1) Po((a® — p?)11%) cos (2mg)

(56)
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TABLE I

_(rr SO, v)e'dp’de’
o=, FEs e e

FIE)) Gx, y)
1 1
1
X — X
2
x? L [4a2 + 5x% — v?]
16 ’
3
xy — XV
e
x? kS [6xa2 + 7x% — 3xy?]
32
x%y 1 [2va? — y3 + 9x2y]
32 -
1
xt o [14dat + 1442 — 48y%02 + 1695 — 102x2y? -+ 9yi]
X3y ——1— [96xva2 + 210x3y — 603‘\}6]
1024 :
1
ay? | —— 484} + 16x%a2 + 16y%a2 — 17x* + 246x%y% — 17v!]
1024
where

pr=u't4y"2<qa?

pi=x24+y2<q?

0<e<2r

Py =associated Legendre functions

n, m mand y=integers subject to the condition x>0,
0<m=<n.

The coefficients 4, are:

A, (1, m, )
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TABLE 11
FACHSY) VIG(x, ¥)
1 0
x 0
. 1
X2 .
2
Xy 0
9
Xt — X
8
3
24y p—
Ty P
at 3 [202 + 1942 — y?]
32 .
. 225
v 256
x2y? i [2a2 + 9x? 4 9*v‘~’]
) ) g
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